Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2270278

RESUMEN

One strategy in caries prevention is to inhibit the formation of cariogenic biofilms. Attempts are being made to develop oral hygiene products enriched with various antimicrobial agents. One of them is lactoperoxidase-an enzyme that can oxidise (pseudo)halide ions to reactive products with antimicrobial activity. Currently, commercially available products utilise thiocyanate as a substrate; however, several alternatives that are oxidised to products with greater antimicrobial potential have been found. In this study, toxicity against human gingival fibroblasts of the lactoperoxidase system was evaluated using four different (pseudo)halide substrate systems-thiocyanate, iodide, selenocyanate, and a mixture of thiocyanate and iodide. For this purpose, cells were treated with the systems and then apoptosis, cell cycle, intracellular glutathione concentration, and mitochondrial superoxide production were assessed. The results showed that each system, after generating 250 µM of the product, inhibited cell divisions, increased apoptosis, and increased the percentage of dead cells. It was concluded that the mechanism of the observed phenomena was not related to increased superoxide production or the depletion of glutathione concentration. These findings emphasised the need for the further in vitro and in vivo toxicity investigation of the modified lactoperoxidase system to assess its safety and the possibility of use in oral hygiene products.


Asunto(s)
Lactoperoxidasa , Tiocianatos , Humanos , Fibroblastos/metabolismo , Peróxido de Hidrógeno/farmacología , Yoduros/metabolismo , Lactoperoxidasa/metabolismo , Superóxidos , Tiocianatos/farmacología , Encía/metabolismo
2.
Sci Rep ; 12(1): 20935, 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2151085

RESUMEN

The lactoperoxidase (LPO)-hydrogen peroxide-halides reaction (LPO system) converts iodide and thiocyanate (SCN-) into hypoiodous acid (HOI) and hypothiocyanite (OSCN-), respectively. Since this system has been implicated in defense of the airways and oropharynx from microbial invasion, in this proof-of-concept study we measured the concentrations of these analytes in human saliva from a convenience clinical sample of 40 qualifying subjects before and after acute iodine administration via the iodinated contrast medium used in coronary angiography to test the hypothesis that an iodide load increases salivary iodide and HOI concentrations. Saliva was collected and salivary iodide, SCN-, HOI and OSCN- were measured using standard methodology. The large iodine load delivered by the angiographic dye, several 100-fold in excess of the U.S. Recommended Daily Allowance for iodine (150 µg/day), significantly increased salivary iodide and HOI levels compared with baseline levels, whereas there was no significant change in salivary SCN- and OSCN- levels. Iodine load and changes of salivary iodide and HOI levels were positively correlated, suggesting that higher iodide in the circulation increases iodide output and salivary HOI production. This first of its kind study suggests that a sufficient but safe iodide supplementation less than the Tolerable Upper Limit for iodine set by the U.S. Institute of Medicine (1,100 µg/day) may augment the generation of antimicrobial HOI by the salivary LPO system in concentrations sufficient to at least in theory protect the host against susceptible airborne microbial pathogens, including enveloped viruses such as coronaviruses and influenza viruses.


Asunto(s)
Antiinfecciosos , Yodo , Estados Unidos , Humanos , Yoduros , Antiinfecciosos/farmacología , Antibacterianos , Angiografía Coronaria
3.
Molecules ; 27(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: covidwho-2066279

RESUMEN

Antimicrobial resistance (AMR) is a major concern for the survival of mankind. COVID-19 accelerated another silent pandemic of AMR through the uncontrolled use of antibiotics and biocides. New generations of antimicrobial agents are needed to combat resistant pathogens. Crown ethers can be used as models for drug action because they are similar to antibiotics. Iodine is a well-known microbicide but is characterized by instability and short-term effectivity. Iodine can be stabilized in the form of polyiodides that have a rich topology but are dependent on their immediate surroundings. In addition, copper has been successfully used since the beginning of history as a biocidal agent. We, therefore, combined iodine and copper with the highly selective crown ether 1,4,7,10-tetraoxacyclododecane (12-crown-4). The morphology and composition of the new pentaiodide [Cu(12-crown-4)2]I5 was investigated. Its antimicrobial activities against a selection of 10 pathogens were studied. It was found that C. albicans WDCM 00054 is highly susceptible to [Cu(12-crown-4)2]I5. Additionally, the compound has good to intermediate antimicrobial activity against Gram-positive and Gram-negative bacilli. The chain-like pentaiodide structure is V-shaped and consists of iodine molecules with very short covalent bonds connected to triiodides by halogen bonding. The single crystal structure is arranged across the lattice fringes in the form of ribbons or honeycombs. The susceptibility of microorganisms towards polyiodides depends on polyiodide bonding patterns with halogen-, covalent-, and non-covalent bonding.


Asunto(s)
Antiinfecciosos , COVID-19 , Éteres Corona , Desinfectantes , Yodo , Antibacterianos , Antiinfecciosos/química , Antiinfecciosos/farmacología , Cobre/química , Éteres Corona/química , Halógenos , Humanos , Yoduros , Yodo/química
4.
Appl Environ Microbiol ; 87(24): e0182421, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1532953

RESUMEN

As a result of the novel coronavirus disease 2019 pandemic, strengthening control measures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an urgent global issue. In addition to antiviral therapy and vaccination strategies, applying available virucidal substances for SARS-CoV-2 inactivation is also a target of research to prevent the spread of infection. Here, we evaluated the SARS-CoV-2 inactivation activity of a copper iodide (CuI) nanoparticle dispersion, which provides Cu+ ions having high virucidal activity, and its mode of actions. In addition, the utility of CuI-doped film and fabric for SARS-CoV-2 inactivation was evaluated. The CuI dispersion exhibited time-dependent rapid virucidal activity. Analyses of the modes of action of CuI performed by Western blotting and real-time reverse transcription-PCR targeting viral proteins and the genome revealed that CuI treatment induced the destruction of these viral components. In this setting, the indirect action of CuI-derived reactive oxygen species contributed to the destruction of viral protein. Moreover, the CuI-doped film and fabric demonstrated rapid inactivation of the SARS-CoV-2 solution in which the viral titer was high. These findings indicated the utility of the CuI-doped film and fabric as anti-SARS-CoV-2 materials for the protection of high-touch environmental surfaces and surgical masks/protective clothes. Throughout this study, we demonstrated the effectiveness of CuI nanoparticles for inactivating SARS-CoV-2 and revealed a part of its virucidal mechanism of action. IMPORTANCE The COVID-19 pandemic has caused an unprecedented number of infections and deaths. As the spread of the disease is rapid and the risk of infection is severe, hand and environmental hygiene may contribute to suppressing contact transmission of SARS-CoV-2. Here, we evaluated the SARS-CoV-2 inactivation activity of CuI nanoparticles, which provide the Cu+ ion as an antiviral agent, and we provided advanced findings of the virucidal mechanisms of action of Cu+. Our results showed that the CuI dispersion, as well as CuI-doped film and fabric, rapidly inactivated SARS-CoV-2 with a high viral titer. We also demonstrated the CuI's virucidal mechanisms of action, specifically the destruction of viral proteins and the genome by CuI treatment. Protein destruction largely depended on CuI-derived reactive oxygen species. This study provides novel information about the utility and mechanisms of action of promising virucidal material against SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , COVID-19/prevención & control , Cobre/farmacología , Desinfección/métodos , Yoduros/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19/transmisión , Línea Celular , Chlorocebus aethiops , Desinfectantes/farmacología , Genoma Viral/efectos de los fármacos , Humanos , Sistema de Administración de Fármacos con Nanopartículas/farmacología , Nanopartículas , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2/genética , Células Vero
7.
Med Hypotheses ; 143: 109866, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1386296

RESUMEN

Zinc Iodide and Dimethyl Sulfoxide compositions are proposed as therapeutic agents to treat and prevent chronic and acute viral infections including SARS-CoV-2 infected patients. The therapeutic combinations have a wide range of virucidal effects on DNA and RNA containing viruses. The combinations also exhibit anti-inflammatory, immunomodulating, antifibrotic, antibacterial, antifungal and antioxidative effects. Given the fact that Zinc Iodide has been used as an oral antiseptic agent and DMSO has been already proven as a safe pharmaceutical solvent and therapeutic agent, we hypothesize that the combination of these two agents can be applied as an effective, safe and inexpensive treatment for SARS-CoV-2 and other viral infection. The therapeutic compound can be applied as both etiological and pathogenesis therapy and used as an effective and safe antiseptic (disinfectant) for human and animals as well.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Dimetilsulfóxido/administración & dosificación , Desinfectantes/administración & dosificación , Yoduros/administración & dosificación , Neumonía Viral/tratamiento farmacológico , Compuestos de Zinc/administración & dosificación , Animales , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Antivirales/administración & dosificación , Betacoronavirus , COVID-19 , Quimioterapia Combinada , Humanos , Inflamación , Pandemias , SARS-CoV-2 , Solventes , Virosis/tratamiento farmacológico , Tratamiento Farmacológico de COVID-19
8.
Ter Arkh ; 92(3): 50-55, 2020 Apr 27.
Artículo en Ruso | MEDLINE | ID: covidwho-724941

RESUMEN

AIM: To assess the effectiveness of the use of the antiviral drug enisamium iodide in the complex treatment of acute respiratory viral infections (ARVI) caused by various pathogens in routine clinical practice. MATERIALS AND METHODS: А prospective randomized study included 134 patients who were treated in the epidemic season of influenza and ARVI in 20182019. All patients were examined for the presence of influenza A and B viruses, respiratory syncytial virus, human metapneumovirus, parainfluenza virus, coronaviruses, rhinoviruses, adenoviruses in nasopharyngeal swabs by PCR. Patients of the main group received enisamium iodide along with symptomatic therapy, the control group received only symptomatic therapy. The primary parameter of the effectiveness of therapy was evaluated on the scale of the general severity of the manifestations of ARVI (Total Symptom Score TSS) from the 2nd to the 4th day and by the secondary criteria of effectiveness: assessment of the duration of ARVI, the severity of fever, the proportion of patients with normal body temperature, the duration of the main clinical symptoms of acute respiratory viral infections, the proportion of patients in whom complications requiring antibiotics were noted, the dynamics of interferon status on the 6th day. To conduct a statistical analysis, depending on the efficiency parameter, the ANCOVA method with a fixed group factor and an initial score on the TSS severity scale was used as covariates, a criterion for comparing quantitative indicators in two independent groups. RESULTS: According to the results of the analysis of the primary efficacy parameter, the median (interquartile range) of the average score on the scale of the general severity of ARVI manifestations in the main group was 4.33 (3.675.83), in the comparison group 6.00 (4.677.25; p0.001). The duration of systemic and local manifestations of acute respiratory viral infections was statistically significantly less in the main group (p=0.002 and p=0.019, respectively). Prescription of additional therapy was required in 2 (2.9%) patients of the main group (patients taking enisamium iodide), compared with 8 (11.9%) patients in the control group. Serum levels of interferon  and interferon  on the last day of treatment were statistically significantly higher in patients of the main group compared with the control group (p0.001). Treatment (excellent) was evaluated by 42 (62.7%) patients, while in the control group only 17 (25.8%) patients gave similar ratings. Both patients (p0.001) and doctors (p0.002) rated therapy tolerance better in the study group. CONCLUSION: The results confirmed the safety and effectiveness of enisamium iodide as a treatment for ARVI and influenza. The antiviral, interferonogenic and anti-inflammatory properties of the drug are involved in the formation of an antiviral response and reduce the risk of complications, which makes it possible to reduce the number of symptomatic agents used.


Asunto(s)
Antivirales/uso terapéutico , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Virosis/tratamiento farmacológico , Humanos , Yoduros/uso terapéutico , Estudios Prospectivos , Piridinas , Compuestos de Piridinio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA